Suppression of Candida Biofilms with an Iodine Oral Rinse

B.M. BHATT, C.J. GAUNTT, K.P. MCCLOSKEY, and G. SIEGEL
Biomedical Development Corporation, San Antonio, TX, USA

ABSTRACT

Objective: The purpose of this experiment was to determine the inhibitory effectiveness of several iodine Oral Rinse formulations (OR) in the metabolic activities of cells in Candida albicans biofilms as assessed by XTT assay.

Methods: Candida albicans (ATCC# SC5314) was propagated, washed 3X by PBS and suspended to 1x10^6 cells/ml in RPMI. One-tenth ml aliquots of the cell suspension were seeded to wells of 96 well microtiter plates. The plates were incubated for 24 or 48 hr at 37°C to allow biofilm to form, which was confirmed by microscopy at 40X. Unattached cells were removed by washing thrice with PBS and then 0.1ml PBS was added per well. Groups of 8 cell cultures were treated with 0.1ml of containing 0.012%, 0.045%, 0.068%, or 0.135% iodine, OR without iodine (vehicle control), 0.12% Chlorhexidine Gluconate (CHX), Fluconazole (10mg/ml oral suspension), or RPMI 1640 supplemented as above (growth control) for 30, 60 or 120 seconds. Sodium thiosulfate was added to each well containing OR to neutralize free iodine or 100 µl of PBS was added to biofilms receiving other treatments. After removal of all fluids, the biofilms were washed twice with 0.1ml PBS and the XTT assay was performed.

RESULTS (continued)

The metabolic activity of C. albicans cells in biofilms was determined by the XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) -reduction assay, as described by Ramage. The XTT measures metabolic activity of mitochondrial dehydrogenases in live cells; these enzymes convert a colorless XTT tetrazolium salt into a formazan-colored product. XTT assay absorbance readings have been found to be proportional to the cellular density of the biofilm.

Candida albicans (ATCC# SC5314) was propagated in yeast peptone dextrose medium for 18-20hr at 37°C in an orbital shaker. After washing thrice with phosphate-buffered saline (PBS), the cells were suspended to 1x10^6 cells/ml in RPMI 1640 medium containing L-glutamine (2mM/ml) and morpholino propane-sulfonic acid. One-tenth ml aliquots of the cell suspension were seeded to wells of 96 well microtiter plates. The plates were incubated for 24 or 48 hr at 37°C to allow biofilm to form. Formation of biofilms was confirmed by microscopy at 40X. Unattached cells were removed by washing thrice with PBS and then 0.1ml PBS was added per well. Groups of 8 cell cultures were treated with 0.1ml of iodine-based OR with 0.12%, 0.45%, 0.68%, or 0.135% iodine, the oral rinse lacking iodine (vehicle control), chlorhexidine gluconate oral rinse (CHG, 0.12%), fluconazole (Fluc, 10mg/ml oral suspension), or RPMI 1640 supplemented as above (growth control) for 30, 60 or 120 sec. Sodium thiosulfate (25 µl of 0.1N) was added to each well containing OR with iodine to block further activity or 100 µl of PBS was added to biofilm cultures receiving other treatments. After removal of all fluids, the biofilm cultures were washed twice with 0.1ml PBS and the XTT assay was performed as described by Ramage et al.

CONCLUSIONS

Iodine-based oral rinse formulations are effective in vitro against C. albicans biofilm. The iodine formulations demonstrate a dose-dependent response and the higher concentration formulations are more effective than chlorhexidine or fluconazole in the XTT assay.

METHODS (continued)

C. albicans was propagated, washed 3X by PBS and suspended to 1x10^6 cells/ml in RPMI. One-tenth ml aliquots of the cell suspension were seeded to wells of 96 well microtiter plates. The plates were incubated for 24 or 48 hr at 37°C to allow biofilm to form. Formation of biofilms was confirmed by microscopy at 40X. Unattached cells were removed by washing thrice with PBS and then 0.1ml PBS was added per well. Groups of 8 cell cultures were treated with 0.1ml of iodine-based OR with 0.12%, 0.45%, 0.68%, or 0.135% iodine, the oral rinse lacking iodine (vehicle control), chlorhexidine gluconate oral rinse (CHG, 0.12%), fluconazole (Fluc, 10mg/ml oral suspension), or RPMI 1640 supplemented as above (growth control) for 30, 60 or 120 sec. Sodium thiosulfate (25 µl of 0.1N) was added to each well containing OR with iodine to block further activity or 100 µl of PBS was added to biofilm cultures receiving other treatments. After removal of all fluids, the biofilm cultures were washed twice with 0.1ml PBS and the XTT assay was performed as described by Ramage et al.

RESULTS

Data from 24 and 48hr C. albicans biofilms were similar; therefore only data from the 48hr old biofilm are presented in the Figure below. The results are presented as percent reduction of metabolic activities in biofilm cells by iodine formulations compared to untreated control biofilm cells, as determined by XTT assay. Oral rinse formulations containing higher concentrations of iodine and longer times of treatment were more effective in inhibiting some metabolic activities of Candida albicans cells in biofilms. Oral rinse formulations containing 0.68%, or 0.135% iodine were more effective in reducing metabolic activities than 0.12% chlorhexidine gluconate or fluconazole at 60 and 120 sec of treatment.

REFERENCE


ACKNOWLEDGEMENTS

Presented at the: 4th ASM Conference on Biofilms March 25 – 29, 2007 Quebec City, Quebec, Canada